Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review
نویسندگان
چکیده
Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs.
منابع مشابه
Investigation of immunosensor modification with reduced Graphene Oxide with Au Nanoparticles on glassy carbon electrode in Label-free for Escherichia coli detection
Escherichia coli is an indicator in the quality control of pharmaceutical and other samples. Reduced graphene oxide (rGO) as a kind of carbon compositions was immobilized on glassy carbon electrode (GCE). Chronoamperometric and reduction methods were used for Au NPs decoration and it completed with polyclonal E. coli antibody and 0.5 W/V% Bovine Serum Albumin solution. Morphology and structure ...
متن کاملAssessing glycolytic flux alterations resulting from genetic perturbations in E. coli using a biosensor
We describe the development of an optimized glycolytic flux biosensor and its application in detecting altered flux in a production strain and in a mutant library. The glycolytic flux biosensor is based on the Cra-regulated ppsA promoter of E. coli controlling fluorescent protein synthesis. We validated the glycolytic flux dependency of the biosensor in a range of different carbon sources in si...
متن کاملPoint-of-care detection of Escherichia coli O157:H7 in water using AuNPs-based aptasensor
Objective(s): Access to safe drinking and irrigation water has always been one of the major human concerns worldwide. Thus, rapid, sensitive, and inexpensive approaches for pathogenic bacteria detection, such as Escherichia coli O157:H7 (EHEC) that can induce important infectious diseases, are highly on demand. Materials and Methods: In ...
متن کاملDevelopment of 16S rRNA targeted PCR methods for the detection of Escherichia coli in Rainbow trout (Oncorhynchus mykiss)
Objectives: The presence of E.coli in fish intended for human consumption may constitute a potential danger, not only in causing disease, but also because of the possible transfer of antibiotic resistance from aquatic bacteria to those infecting humans. The objective of this study was to develop an improved PCR method based on species – specific 16 S rRNA gene primers (FES,...
متن کاملDevelopment and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples.
A microbial whole-cell biosensor was developed, and its potential to measure water-dissolved concentrations of middle-chain-length alkanes and some related compounds by bioluminescence was characterized. The biosensor strain Escherichia coli DH5 alpha(pGEc74, pJAMA7) carried the regulatory gene alkS from Pseudomonas oleovorans and a transcriptional fusion of PalkB from the same strain with the ...
متن کامل